Lower HDL-C and apolipoprotein A-I are related to higher glomerular filtration rate in subjects without kidney disease

2010 
Animal experiments show that the kidney contributes to apolipoprotein (apo)A-I catabolism. We tested relationships of HDL cholesterol (HDL-C) and apo-I with kidney function in subjects without severe chronic kidney disease. Included was a random sample of the general population (part of the PREVEND cohort). Kidney function [estimated glomerular filtration rate (e-GFR) by two well-established equations and creatinine clearance], HDL-C, triglycerides, apoA-I and insulin resistance (HOMAir) were measured in 2,484 fasting subjects (e-GFR≥45 ml/min/1.73m2) without macroalbuminuria, cardiovascular disease, diabetes, or the use of anti-hypertensives and/or lipid-lowering agents. HDL-C (r = −0.056 to −0.102, P < 0.01 to < 0.001) and apo A-I (r = −0.096 to −0.126, P < 0.001) were correlated inversely with both GFR estimates and creatinine clearance in univariate analyses. Multiple linear regression analyses also demonstrated inverse relationships of HDL-C and apoA-I with all measures of kidney function even after adjustment for age, sex, waist circumference, HOMAir, triglycerides, and urinary albumin excretion (P = 0.053 to 0.004). In conclusion, HDL-C and apoA-I are inversely related to e-GFR and creatinine clearance in subjects without severely compromised kidney function, which fits the concept that the kidney contributes to apoA-I regulation in humans. High glomerular filtration rate may be an independent determinant of a pro-atherogenic lipoprotein profile.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    61
    References
    24
    Citations
    NaN
    KQI
    []