Tuning the Core–Shell Structure of Au144@Fe2O3 for Optimal Catalytic Activity for CO Oxidation

2018 
Core–shell heterostructures have been utilized as a catalyst that is thermally stable and exhibits a synergistic effect between core and shell, resulting in increased catalytic activity. Here we report on the synthetic procedure involving a Au144 core with an iron oxide shell which can be varied in thickness. The Au144@Fe2O3 particles with Au:Fe mass ratios of 1:2, 1:4, and 1:6 were synthesized and then deposited onto silica via colloidal deposition. Using CO oxidation, each Au144@Fe2O3/SiO2 catalyst gave varying degrees of full CO conversion depending on the thickness of the iron oxide layer. The 1:4 Au144@Fe2O3/SiO2 catalyst produced the best catalytic activity and was further investigated via thermal treatments, where calcination at 300 °C presented the best results, and the 1:4 ratio was still active at 100 °C after thermal treatments.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    75
    References
    2
    Citations
    NaN
    KQI
    []