Effects of 1,2-naphthoquinones on human tumor cell growth and lack of cross-resistance with other anticancer agents

1998 
: The sensitivity of human tumor and rat prostate tumor cells to a series of naphthoquinones, including tricyclic compounds of the beta-lapachone and dunnione families as well as 4-alkoxy-1,2-naphthoquinones, was evaluated. To better understand the mechanism of cytotoxicity of 1,2-naphthoquinones, the roles of various resistance mechanisms including P-glycoprotein, multidrug resistant associated protein, glutathione (GSH) and related enzymes, altered topoisomerase activity, and overexpression of genes that control apoptosis (bcl-2 and bc-xL) were studied. MCF7 cells were most sensitive to the naphthoquinones with IC50 values ranging from 1.1 to 10.8 microM, as compared to 2.5 to >32 microM for HT29 human colon, A549 human lung, CEM leukemia and AT3.1 rat prostate cancer cells. MCF7 ADR cells, selected for resistance to adriamycin (ADR), displayed cross-resistance to the tricyclic 1,2-naphthoquinones. Drug efflux via a P-glycoprotein mechanism was ruled out as a mechanism of resistance to 1,2-naphthoquinones, since KB-V1 cells expressing high levels of P-glycoprotein and the KB-3.1 parent line were equally sensitive to these compounds. Any resistance of the tricyclic naphthoquinones noted in ADR-resistant cells appeared to relate to the GSH redox cycle and could be circumvented by exposure to buthionine sulfoximine or by changing the structure from a tricyclic derivative to a 4-alkoxy-1,2-naphthoquinone. The 1,2-naphthoquinones were found to be cytotoxic against CEM/VM-1 and CEM/M70-B1 cells that were selected for resistance to teniposide or merbarone, respectively. In addition, cells overexpressing bcl-2 or bcl-xL proteins were as sensitive to 1,2-naphthoquinones as were control cells. Because of their effectiveness in drug-resistant cells, these agents appear to hold promise as effective chemotherapeutic agents.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    46
    Citations
    NaN
    KQI
    []