Electromagnetic Tomography for Detection, Differentiation, and Monitoring of Brain Stroke: A Virtual Data and Human Head Phantom Study.

2017 
Brain stroke is one of the leading causes of death and disability worldwide [1]. It can be classified as ischemic stroke (i-stroke), e.g., blood flow is restricted by a blood clot, or hemorrhagic stroke (h-stroke), e.g., a bleeding in the brain. Approximately 80% of total stroke cases are ischemic. The most common treatment for i-stroke to date is the use of thrombolytics: drugs that dissolve the blood clots. The clinical decision to apply a thrombolytic should be made within 3-4.5 h from the onset of the stroke symptoms (e.g., [2]), and it relies on imaging methods such as computed tomography (CT) and magnetic resonance imaging (MRI). Further evaluation of stroke evolution is done mainly by imaging to assess the extent of the ischemic injury and to correlate with the functional behavior of the patient. However, to date there is no accurate way to provide reliable information about the key components of i-stroke physiology that include the position and size of the acute stroke (arterial occlusion), the core infarct region that contains irreversibly injured tissues, and the ischemic penumbra, i.e., the tissue that could potentially be restored by rapid revascularization [1], [3].
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    26
    References
    68
    Citations
    NaN
    KQI
    []