Hydrodynamic Collectivity in Proton--Proton Collisions at 13 TeV.

2017 
In this paper, we investigate the hydrodynamic collectivity in proton--proton (pp) collisions at 13 TeV, using iEBE-VISHNU hybrid model with HIJING initial conditions. With properly tuned parameters, our model simulations can remarkably describe all the measured 2-particle correlations, including integrated and differential elliptic flow coefficients for all charged and identified hadrons ($K_S^0$, $\Lambda$). However, our model calculations show positive 4-particle cumulant $c_{2}\{4\}$ in high multiplicity pp collisions, and can not reproduce the negative $c_{2}\{4\}$ measured in experiment. Further investigations on the HIJING initial conditions show that the fluctuations of the second order anisotropy coefficient $\varepsilon_{2}$ increases with the increase of its mean value, which leads to a similar trend of the flow fluctuations. For a simultaneous description of the 2- and 4- particle cumulants within the hydrodynamic framework, it is required to have significant improvements on initial condition for pp collisions, which is still lacking of knowledge at the moment.
    • Correction
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []