Evolutionary Algorithms with Distribution Estimation by Variational Bayesian Mixtures of Factor Analyzers

2005 
By estimating probability distributions of the good solutions in the current population, some researchers try to find the optimal solution more efficiently. Particularly, finite mixtures of distributions have a very useful role in dealing with complex problems. However, it is difficult to choose the number of components in the mixture models and merge superior partial solutions represented by each component. In this paper, we propose a new continuous evolutionary optimization algorithm with distribution estimation by variational Bayesian mixtures of factor analyzers. This technique can estimate the number of mixtures automatically and combine good sub-solutions by sampling new individuals with the latent variables. In a comparison with two probabilistic model-based evolutionary algorithms, the proposed scheme achieves superior performance on the traditional benchmark function optimization. We also successfully estimate the parameters of S-system for the dynamic modeling of biochemical networks.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []