Mesophyll conductance does not contribute to greater photosynthetic rate per unit nitrogen in temperate compared with tropical evergreen wet‐forest tree leaves

2018 
: Globally, trees originating from high-rainfall tropical regions typically exhibit lower rates of light-saturated net CO2 assimilation (A) compared with those from high-rainfall temperate environments, when measured at a common temperature. One factor that has been suggested to contribute towards lower rates of A is lower mesophyll conductance. Using a combination of leaf gas exchange and carbon isotope discrimination measurements, we estimated mesophyll conductance (gm ) of several Australian tropical and temperate wet-forest trees, grown in a common environment. Maximum Rubisco carboxylation capacity, Vcmax , was obtained from CO2 response curves. gm and the drawdown of CO2 across the mesophyll were both relatively constant. Vcmax estimated on the basis of intercellular CO2 partial pressure, Ci , was equivalent to that estimated using chloroplastic CO2 partial pressure, Cc , using 'apparent' and 'true' Rubisco Michaelis-Menten constants, respectively Having ruled out gm as a possible factor in distorting variations in A between these tropical and temperate trees, attention now needs to be focused on obtaining more detailed information about Rubisco in these species.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    71
    References
    17
    Citations
    NaN
    KQI
    []