A Noninterpolated Estimate of Horizontal Spatial Covariance from Nonorthogonally and Irregularly Sampled Scalar Velocities

2017 
AbstractThis paper presents a least squares method to estimate the horizontal (isotropic or anisotropic) spatial covariance of two-dimensional orthogonal vector components, without introducing an intervening mapping step and biases, from the spatial covariance of the nonorthogonally and irregularly sampled raw scalar velocities. The field is assumed to be locally homogeneous in space and sampled in an ensemble so the unknown spatial covariance is a function of spatial lag only. The transformation between the irregular grid on which nonorthogonal scalar projections of the vector are sampled and the regular orthogonal grid on which they will be mapped is created using the geometry of the problem. The spatial covariance of the orthogonal velocity components of the field is parameterized by either the energy (power) spectrum in the wavenumber domain or the lagged covariance in the spatial domain. The energy spectrum is constrained to be nonnegative definite as part of the solution of the inverse problem. This...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    40
    References
    2
    Citations
    NaN
    KQI
    []