Distinct roles of peroxynitrite and hydroxyl radical in triggering stunned myocardium-like impairment of cardiac myocytes in vitro

1999 
Myocardial stunning is characterized by the impairment of excitation-contraction coupling via a decrease in myofilament Ca2+ responsiveness, thought to be triggered by hydroxyl radicals (·OH) generated upon reperfusion. Since peroxynitrite is also expected to be produced during reperfusion, we examined whether it can induce a stunned myocardium-like impairment of cardiac myocytes. Its effect on cultured cardiac myocytes was compared with that of hydrogen peroxide (H2O2), ·OH source. Infusion of peroxynitrite (0.2 mM) induced a decrease in cell motion and a complete arrest in diastole at 2.9 ± 0.3 min, which coincided with an elevation in [Ca2+]i. Arrest induced by infusion of H2O2 (10 mM) was not associated with an increase in [Ca2+]i. The ATP content was unaffected by peroxynitrite (control, 34.3 ± 3.4: + peroxynitrite, 32.9 ± 3.5 nmol/mg protein) and the cells remained viable. Sulfhydryl (SH) content was decreased by peroxynitrite, but not by H2O2. The membrane fluidity (a measure of peroxidation of the membrane lipids) was not affected by peroxynitrite, but was decreased by H2O2. Onset time of arrest was unaffected by deferoxamine (0.2 mM), but was delayed by DTT (10 mM) (from 2.9 ± 0.3 to 19.2 ± 1.6 min). Nitrotyrosine content was unchanged by peroxynitrite, and its augmentation with Fe3+/EDTA (1 mM) was not associated with a shortened onset time of arrest. The function of the Na+/Ca2+ exchanger was impaired by peroxynitrite, but not by H2O2. Peroxynitrite and H2O2 each induce arrest, but only the former increases [Ca2+]i. One of the mechanisms of the increase in [Ca2+]i is Na+/Ca2+ exchanger dysfunction. The impairments were induced through SH oxidation by peroxynitrite, but through lipid peroxidation by H2O2. Myocardial stunning may be induced by both species in concert.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    39
    References
    19
    Citations
    NaN
    KQI
    []