Itinerant magnetism of chromium under pressure: a DFT+DMFT study.

2021 
We consider electronic and magnetic properties of chromium, a well-known itinerant antiferromagnet, by a combination of density functional theory (DFT) and dynamical mean-field theory (DMFT). We find that electronic correlation effects in chromium, in contrast to its neighbors in the periodic table, are weak, leading to the quasiparticle mass enhancement factorm*/m≈ 1.2. Our results for local spin-spin correlation functions and distribution of weights of atomic configurations indicate that the local magnetic moments are not formed. Similarly to previous results of DFT at ambient pressure, the non-uniform magnetic susceptibility as a function of momentum possesses close to the wave vectorQH= (0, 0, 2π/a) (ais the lattice constant) sharp maxima, corresponding to Kohn anomalies. We find that these maxima are preserved by the interaction and are not destroyed by pressure. Our calculations qualitatively capture a decrease of the Neel temperature with pressure and a breakdown of itinerant antiferromagnetism at pressure of ∼9 GPa in agreement with experimental data, although the Neel temperature is significantly overestimated because of the mean-field nature of DMFT.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    62
    References
    0
    Citations
    NaN
    KQI
    []