A novel Bacillus sp. with rapid growth property and high enzyme activity that allows efficient fermentation of soybean meal for improving digestibility in growing pigs

2021 
AIMS Soybean meal (SBM) contributes high-quality dietary protein for pigs. However, it also contains antinutritional factors such as allergenic high molecular weight proteins and non-starch polysaccharides (NSP) that limit its use. Therefore, the objective of this study was to screen and characterize a robust Bacillus sp. from camel dung for soybean meal fermentation to improve the digestibility in growing pigs. METHODS AND RESULTS Molecular characterization revealed that isolate 9 (hereinafter referred to as "CP-9") was a Bacillus subtilis strain. It secreted cellulase (0.07 U ml-1 ), xylanase (1.91 U ml-1 ), and amylase (2.66 U ml-1 ) into the culture supernatant. Isolate CP-9 showed rapid growth on LB agar plates and grew at a wide range of pH (3.0-9.0) and temperatures (23-50°C) in LB broth. Protein profiling of SBM using SDS-PAGE showed a significant reduction of large globular proteins to small peptides after 48 h of fermentation. On a dry matter basis, neutral detergent fibre (NDF) of the fermented SBM (F-SBM) was decreased by 34.25% (from 9.72 to 7.24%) with an increase in CP content by 16.54% (from 48.74 to 56.80%). Pigs fed with a semi-purified diet formulated with F-SBM as the sole source of crude protein had higher (p < 0.05) apparent ileal digestibility (AID) of DM (80.0 vs. 71.7%), ash (55.6 vs. 36.1%), CP (84.2 vs. 78.3%), NDF (70.9 vs. 66.0%), and ADF (62.4 vs. 53.3%) compared with pigs fed with unfermented soybean meal (UF-SBM). CONCLUSIONS A novel Bacillus subtilis strain CP-9 was isolated and characterized from camel dung for efficient fermentation of SBM. This bacterium ameliorates physico-chemical characteristics of F-SBM and improved nutrient digestibility in growing pigs. SIGNIFICANCE AND IMPACT OF THE STUDY Our data suggest that a low-cost solid-state SBM fermentation was developed using this newly isolated bacterium. The resultant F-SBM improved the nutrient digestibility in growing pigs.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    53
    References
    0
    Citations
    NaN
    KQI
    []