A dual-signal readout enzyme-free immunosensor based on hybridization chain reaction-assisted formation of copper nanoparticles for the detection of microcystin-LR

2019 
Abstract Enzyme-based electrochemical biosensors are widely used in immunoassays, but the intrinsic disadvantages of enzymes including instability or sensitivity to temperature and pH should be considered. Herein, an enzyme-free and dual-signal readout immunoassay was established to detect microcystin-LR (MC-LR) sensitively and selectively. Firstly, the microplate was modified with gold nanoparticles-decorated-carbon nanotubes (AuNP-CNT) to immobilize sufficient antigens by the high surface area of CNT and high affinity of AuNP. Then, silver nanoparticles were decorated on gold nanorods to form corn-like AgNP/AuNR composite and then capture secondary antibody and initiator DNA strand. After hybridization chain reaction, long double helix DNA strands can be formed on AgNP/AuNR to germinate copper nanoparticles. A dual-signal readout from the current responses of both silver and copper ions was obtained by using differential pulse stripping voltammetry with the aid of acid-treatment. By using a competitive immunoreaction, MC-LR can be detected in a linear range from 0.005 μg/L to 20 μg/L with a lower detection limit of 2.8 ng/L. The reproducibility, stability and specificity were all acceptable, indicating its promising application in environment monitoring and sensitive electrochemical detection for other analytes.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    40
    References
    28
    Citations
    NaN
    KQI
    []