Postnatal development of subfields in the core region of the mouse auditory cortex.

2021 
Abstract The core region of the rodent auditory cortex has two subfields: the primary auditory area (A1) and the anterior auditory field (AAF). Although the postnatal development of A1 has been studied in several mammalian species, few studies have been conducted on the postnatal development of AAF. Using a voltage-sensitive-dye-based imaging method, we examined and compared the postnatal development of AAF and A1 in mice from postnatal day 11 (P11) to P40. We focused on the postnatal development of tonotopy, the relative position between A1 and AAF, and the properties of tone-evoked responses in the subfields. Tone-evoked responses in the mouse auditory cortex were first observed at P12, and tonotopy was found in both A1 and AAF at this age. Quantification of tonotopy using the cortical magnification factor (CMF; octave difference per unit cortical distance) revealed a rapid change from P12 to P14 in both A1 and AAF, and a stable level from P14. A similar time course of postnatal development was found for the distance between the 4 kHz site in A1 and AAF, the distance between the 16 kHz site in A1 and AAF, and the angle between the frequency axis of A1 and AAF. The maximum amplitude and rise time of tone-evoked signals in both A1 and AAF showed no significant change from P12 to P40, but the latency of the responses to both the 4 kHz and 16 kHz tones decreased during this period, with a more rapid decrease in the latency to 16 kHz tones in both subfields. The duration of responses evoked by 4 kHz tones in both A1 and AAF showed no significant postnatal change, but the duration of responses to 16 kHz tones decreased exponentially in both subfields. The cortical area activated by 4 kHz tones in AAF was always larger than that in A1 at all ages (P12-P40). Our results demonstrated that A1 and AAF developed in parallel postnatally, showing a rapid maturation of tonotopy, slow maturation of response latency and response duration, and a dorsal-to-ventral order (high-frequency site to low-frequency site) of functional maturation.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    78
    References
    0
    Citations
    NaN
    KQI
    []