A Numerical Approach to Dose Optimization for Moving Targets Using Monte Carlo Simulations

2009 
Abstract Chun, K. J., Park, Y., Choi, Y. and Hyun, S. A Numerical Approach to Dose Optimization for Moving Targets Using Monte Carlo Simulations. Radiat. Res. 171, 245–253 (2009). A novel simulation model for the dose distribution of moving targets for high-energy photons was analyzed using the EGSnrc Monte Carlo simulation. We provide here a fundamental numerical framework for the calculation of doses delivered to moving tissues in respiratory systems with improved accuracy. A spherical object with periodic motions inside a water phantom irradiated with incident photons was taken into consideration. The dose distributions of the target and its surrounding region were calculated for a variety of radiation conditions such as photon energy, beam numbers, and beam orientations as well as the target motions determined by realistic respiratory patterns. To determine the optimal dose, two parameters, the average absorbed dose ratio and dose deviation, were newly defined for the moving targets in the phantom. Op...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    18
    References
    0
    Citations
    NaN
    KQI
    []