Quantifying Axial Spine Images Using Object-specific Bi-path Network.

2021 
Automatic estimation of indices from medical images is the main goal of computer-aided quantification (CADq), which speeds up diagnosis and lightens the workload of radiologists. Deep learning technique is a good choice for implementing CADq. Usually, to acquire high-accuracy quantification, specific network architecture needs to be designed for a given CADq task. In this study, considering that the target organs are the intervertebral disc and the dural sac, we propose an object-specific bi-path network (OSBP-Net) for axial spine image quantification. Each path of the OSBP-Net comprises a shallow feature extraction layer (SFE) and a deep feature extraction sub-network (DFE). The SFEs use different convolution strides because the two target organs have different anatomical sizes. The DFEs use average pooling for downsampling based on the observation that the target organs have lower intensity than the background. In addition, an inter-path dissimilarity constraint is proposed and applied to the output of the SFEs, taking into account that the activated regions in the feature maps of two paths should be different theoretically. An inter-index correlation regularization is introduced and applied to the output of the DFEs based on the observation that the diameter and area of the same object express an approximately linear relation. The prediction results of OSBP-Net are compared to several state-of-the-art machine learning-based CADq methods. The comparison reveals that the proposed methods precede other competing methods extensively, indicating its great potential for spine CADq.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    45
    References
    1
    Citations
    NaN
    KQI
    []