The Usage of the Grid in the Simulation of the Comet Oort-Cloud Formation

2011 
The research of the reservoirs of small bodies in the Solar System can help us to refine our theory of the origin and evolution of the whole planetary system we live in. With this chapter, we introduce a numerical simulation of the evolution of an initial proto-planetary disc for 2 Gyr period, in which 10,038 studied test particles, representing the disc, are perturbed by four giant planets in their current orbits and having their current masses. In addition, Galactic-tide and stellar perturbations are considered. The simulation is performed using the grid computing. We explain which circumstances allow us to use the system of independent, online not communicating CPUs. Our simulation describes the probable evolution of the Oort cloud population. In contrast to the previous simulations by other authors, we find an extremely low formation efficiency of this population. The largest number of the bodies (66.4%) was ejected into the interstellar space. Besides other results, we reveal a dominance of high galactic inclinations of comet-cloud orbits.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    15
    References
    0
    Citations
    NaN
    KQI
    []