Atomistic Study of the Electronic Contact Resistivity Between the Half-Heusler Alloys (HfCoSb, HfZrCoSb, HfZrNiSn) and the Metal Ag.

2018 
Half-Heusler(HH) alloys have shown promising thermoelectric properties in the medium and high temperature range. To harness these material properties for thermoelectric applications, it is important to realize electrical contacts with low electrical contact resistivity. However, little is known about the detailed structural and electronic properties of such contacts, and the expected values of contact resistivity. Here, we employ atomistic ab initio calculations to study electrical contacts in a subclass of HH alloys consisting of the compounds HfCoSb, HfZrCoSb, and HfZrNiSn. By using Ag as a prototypical metal, we show that the termination of the HH material critically determines the presence or absence of strong deformations at the interface. Our study includes contacts to doped materials, and the results indicate that the p-type materials generally form ohmic contacts while the n-type materials have a small Schottky barrier. We calculate the temperature dependence of the contact resistivity in the low to medium temperature range and provide quantitative values that set lower limits for these systems.
    • Correction
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []