In mice and humans, the brain’s blood vessels mature postnatally to acquire barrier and contractile properties

2021 
The brain dense vascular network is essential for distributing oxygen and nutrients to neural cells. The network develops during embryogenesis and leads to the formation of the endothelial blood-brain barrier (BBB). This barrier is surrounded by mural cells (pericytes and vascular smooth muscle cells (VSMCs)) and fibroblasts. Here, we compared the molecular and functional properties of brain vascular cells on postnatal day (P)5 vs. P15, via a transcriptomic analysis of purified mouse cortical microvessels (MVs) and the identification of vascular-cell-type-specific or -preferentially expressed transcripts. We found that endothelial cells (ECs), VSMCs and fibroblasts follow specific molecular maturation programs over this time period. In particular, ECs acquire P-glycoprotein (P-gP)-mediated efflux capacities. The arterial VSMC network expands, acquires contractile proteins (such as smooth muscle actin (SMA) and myosin heavy chain 11 (Myh11)) and becomes contractile. We also analyzed samples of human brain cortex from the early prenatal stage through to adulthood: the expression of endothelial P-gP increased at birth and Myh11 in VSMCs acts as a developmental switch (as in the mouse) at birth and up to the age of 2 of 5 years. Thus, in both mice and humans, the early postnatal phase is a critical period during which the essential properties of cerebral blood vessels (i.e. the endothelial efflux of xenobiotics and other molecules, and the VSMC contractility required for vessel tone and brain perfusion) are acquired and mature.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    60
    References
    2
    Citations
    NaN
    KQI
    []