An antidote approach to reduce risk and broaden utility of antibody-based therapeutics

2017 
Abstract Antibody therapeutics offer effective treatment options for a broad range of diseases. One of the greatest benefits of antibody therapeutics is their extraordinarily long serum half-life, allowing infrequent dosing with long-lasting effects. A characteristic of antibodies that drives long half-life is the ability to interact with the recycling receptor, FcRn, in a pH-dependent manner. The benefit of long half-life, however, carries with it liabilities. Although the positive effects of antibody therapeutics are long-lasting, any acute adverse events or chronic negative impacts, such as immunosuppression in the face of an infection, are also long-lasting. Therefore, we sought to develop antibodies with a chemical handle that alone would enjoy the long half-life of normal antibodies but, upon addition of a small-molecule antidote, would interact with the chemical handle and inhibit the antibody recycling mechanism, thus leading to rapid degradation and shortened half-life in vivo. Here we present a proof of concept study where we identify sites to incorporate a non-natural amino acid that can be chemically modified to modulate FcRn interaction in vitro and antibody half-life in vivo. This is an important first step in developing safer therapeutics, and the next step will be development of technology that can perform the modifying chemistry in vivo.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    43
    References
    2
    Citations
    NaN
    KQI
    []