Multi-attribute integrated measurement of node importance in complex networks.

2015 
The measure of node importance in complex networks is very important to the research of networks stability and robustness; it also can ensure the security of the whole network. Most researchers have used a single indicator to measure the networks node importance, so that the obtained measurement results only reflect certain aspects of the networks with a loss of information. Meanwhile, because of the difference of networks topology, the nodes' importance should be described by combining the character of the networks topology. Most of the existing evaluation algorithms cannot completely reflect the circumstances of complex networks, so this paper takes into account the degree of centrality, the relative closeness centrality, clustering coefficient, and topology potential and raises an integrated measuring method to measure the nodes' importance. This method can reflect nodes' internal and outside attributes and eliminate the influence of network structure on the node importance. The experiments of karate network and dolphin network show that networks topology structure integrated measure has smaller range of metrical result than a single indicator and more universal. Experiments show that attacking the North American power grid and the Internet network with the method has a faster convergence speed than other methods.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    30
    References
    9
    Citations
    NaN
    KQI
    []