Deep learning enabled ultra-fast-pitch acquisition in clinical X-ray computed tomography.
2021
OBJECTIVE In X-raycomputed tomography (CT), many important clinical applications may benefit from a fast acquisition speed. The helical scan is the most widely used acquisition mode in clinical CT, where a fast helical pitch can improve the acquisition speed. However, on a typical single-source helical CT (SSCT) system, the helical pitch p typically cannot exceed 1.5; otherwise, reconstruction artifacts will result from data insufficiency. The purpose of this work is to develop a deep convolutional neural network (CNN) to correct for artifacts caused by an ultra-fast pitch, which can enable faster acquisition speed than what is currently achievable. METHODS A customized CNN (denoted as ultra-fast-pitch network (UFP-net)) was developed to restore the underlying anatomical structure from the artifact-corrupted post-reconstruction data acquired from SSCT with ultra-fast pitch (i.e., p ≥ 2). UFP-net employed residual learning to capture the features of image artifacts. UFP-net further deployed in-house-customized functional blocks with spatial-domain local operators and frequency-domain non-local operators, to explore multi-scale feature representation. Images of contrast-enhanced patient exams (n = 83) with routine pitch setting (i.e., p 0.98) with lower mean rRMSE ( 9.1%). Quantitative metrics at p = 3: UFP-net-mean SSIM [0.86, 0.94] and mean rRMSE [5.0%, 8.2%]; FBP-mean SSIM [0.36, 0.61] and mean rRMSE [36.0%, 58.6%]. CONCLUSION The proposed UFP-net has the potential to enable ultra-fast data acquisition in clinical CT without sacrificing image quality. This method has demonstrated reasonable generalizability over different body parts when the corresponding CT exams involved consistent base scan parameters.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
35
References
0
Citations
NaN
KQI