Association of Radiotherapy for Rectal Cancer and Second Gynecological Malignant Neoplasms.
2021
Importance Radiotherapy is a common treatment for rectal cancer, yet the risk of second gynecological malignant neoplasms (SGMNs) in patients with rectal cancer undergoing radiotherapy have not been adequately studied. Objective To investigate the association between radiotherapy and the risk of individual types of SGMN in patients with rectal cancer and assess survival outcomes. Design, Setting, and Participants A large population-based cohort study was designed to identify the risk of SGMNs in patients with rectal cancer diagnosed from January 1973 to December 2015. The statistical analysis was conducted from September 2019 to April 2020. The study was based on the 9 cancer registries of Surveillance, Epidemiology, and End Results database. A total of 20 142 female patients with rectal cancer in localized and regional stage were included. Exposure Receipt of neoadjuvant radiotherapy for rectal cancer. Main Outcomes and Measures The development of an SGMN defined as any type of GMN occurring more than 5 years after the diagnosis of rectal cancer. The cumulative incidence of SGMNs was estimated by Fine-Gray competing risk regression. Poisson regression was used to evaluate the radiotherapy-associated risk for SGMNs in patients undergoing radiotherapy vs patients not undergoing radiotherapy. The Kaplan-Meier method was used to assess the survival outcomes of patients with SGMNs. Results Of 20 142 patients, 16 802 patients (83.4%) were White and the median age was 65 years (interquartile range, 54-74 years). A total of 5310 (34.3%) patients were treated with surgery and radiotherapy, and 14 832 (65.7%) patients were treated with surgery alone. The cumulative incidence of SGMNs during 30 years of follow-up was 4.53% among patients who received radiotherapy and 1.53% among patients who did not. In competing risk regression analysis, undergoing radiotherapy was associated with a higher risk of developing cancer of the uterine corpus (adjusted hazard ratio, 3.06; 95% CI, 2.14-4.37; P < .001) and ovarian cancer (adjusted hazard ratio, 2.08; 95% CI, 1.22-3.56; P = .007) compared with those who did not receive radiotherapy. The dynamic radiotherapy-associated risks (RR) for cancer of the uterine corpus significantly increased with increasing age at rectal cancer diagnosis (aged 20-49 years: adjusted RR, 0.79; 95% CI, 0.35-1.79; P = .57; aged 50-69 years: adjusted RR, 3.74; 95% CI, 2.63-5.32; P < .001; aged ≥70 years: adjusted RR, 5.13; 95% CI, 2.64-9.97; P < .001) and decreased with increasing latency since rectal cancer diagnosis (60-119 months: adjusted RR, 3.22; 95% CI, 2.12-4.87; P < .001; 120-239 months: adjusted RR, 2.72; 95% CI, 1.75-4.24; P < .001; 240-360 months: adjusted RR, 1.95; 95% CI, 0.67-5.66; P = .22), but the dynamic RR for ovarian cancer increased with increasing latency since rectal cancer diagnosis (60-119 months: adjusted RR, 0.70; 95% CI, 0.26-1.89; P = .48; 120-239 months: adjusted RR, 2.26; 95% CI, 1.09-4.70; P = .03; 240-360 months: adjusted RR, 11.84; 95% CI, 2.18-64.33; P = .004). The 10-year overall survival among patients with radiotherapy-associated cancer of the uterine corpus was significantly lower than that among matched patients with primary cancer of the uterine corpus (21.5% vs 33.6%; P = .01). Conclusions and Relevance Radiotherapy for rectal cancer was associated with an increased risk of cancer of the uterine corpus and ovarian cancer. Special attention should be paid to reduce radiotherapy-associated SGMNs and improve their prognosis.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
22
References
0
Citations
NaN
KQI