language-icon Old Web
English
Sign In

Observing the carbon-climate system

2016 
Increases in atmospheric CO2 and CH4 result from a combination of forcing from anthropogenic emissions and Earth System feedbacks that reduce or amplify the effects of those emissions on atmospheric concentrations. Despite decades of research carbon-climate feedbacks remain poorly quantified. The impact of these uncertainties on future climate are of increasing concern, especially in the wake of recent climate negotiations. Emissions, long concentrated in the developed world, are now shifting to developing countries, where the emissions inventories have larger uncertainties. The fraction of anthropogenic CO2 remaining in the atmosphere has remained remarkably constant over the last 50 years. Will this change in the future as the climate evolves? Concentrations of CH4, the 2nd most important greenhouse gas, which had apparently stabilized, have recently resumed their increase, but the exact cause for this is unknown. While greenhouse gases affect the global atmosphere, their sources and sinks are remarkably heterogeneous in time and space, and traditional in situ observing systems do not provide the coverage and resolution to attribute the changes to these greenhouse gases to specific sources or sinks. In the past few years, space-based technologies have shown promise for monitoring carbon stocks and fluxes. Advanced versions of these capabilities could transform our understanding and provide the data needed to quantify carbon-climate feedbacks. A new observing system that allows resolving global high resolution fluxes will capture variations on time and space scales that allow the attribution of these fluxes to underlying mechanisms.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    43
    References
    4
    Citations
    NaN
    KQI
    []