Transport Gap Opening and High On–Off Current Ratio in Trilayer Graphene with Self-Aligned Nanodomain Boundaries

2015 
Trilayer graphene exhibits exceptional electronic properties that are of interest both for fundamental science and for technological applications. The ability to achieve a high on–off current ratio is the central question in this field. Here, we propose a simple method to achieve a current on–off ratio of 104 by opening a transport gap in Bernal-stacked trilayer graphene. We synthesized Bernal-stacked trilayer graphene with self-aligned periodic nanodomain boundaries (NBs) on the technologically relevant vicinal cubic-SiC(001) substrate and performed electrical measurements. Our low-temperature transport measurements clearly demonstrate that the self-aligned periodic NBs can induce a charge transport gap greater than 1.3 eV. More remarkably, the transport gap of ∼0.4 eV persists even at 100 K. Our results show the feasibility of creating new electronic nanostructures with high on–off current ratios using graphene on cubic-SiC.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    64
    References
    19
    Citations
    NaN
    KQI
    []