PAN: Personalized Annotation-based Networks for the Prediction of Breast Cancer Relapse.

2021 
The classification of clinical samples based on gene expression data is an important part of precision medicine. In this manuscript, we show how transforming gene expression data into a set of personalized (sample-specific) networks can allow us to harness existing graph-based methods to improve classifier performance. Existing approaches to personalized gene networks have the limitation that they depend on other samples in the data and must get re-computed whenever a new sample is introduced. Here, we propose a novel method, called Personalized Annotation-based Networks (PAN), that avoids this limitation by using curated annotation databases to transform gene expression data into a graph. Unlike competing methods, PANs are calculated for each sample independent of the population, making it a more efficient way to obtain single-sample networks. Using three breast cancer datasets as a case study, we show that PAN classifiers not only predict cancer relapse better than gene features alone, but also outperform PPI (protein-protein interactions) and population-level graph-based classifiers. This work demonstrates the practical advantages of graph-based classification for high-dimensional genomic data, while offering a new approach to making sample-specific networks.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    1
    Citations
    NaN
    KQI
    []