Domain Structure of the Redβ Single-Strand Annealing Protein: the C-terminal Domain is Required for Fine-Tuning DNA-binding Properties, Interaction with the Exonuclease Partner, and Recombination in vivo

2016 
Abstract Redβ is a component of the Red recombination system of bacteriophage λ that promotes a single strand annealing (SSA) reaction to generate end-to-end concatemers of the phage genome for packaging. Redβ interacts with λ exonuclease (λexo), the other component of the Red system, to form a “synaptosome” complex that somehow integrates the end resection and annealing steps of the reaction. Previous work using limited proteolysis and chemical modification revealed that Redβ consists of an N-terminal DNA binding domain, residues 1–177, and a flexible C-terminal “tail”, residues 178–261. Here, we quantitatively compare the binding of the full-length protein (Redβ FL ) and the N-terminal domain (Redβ 177 ) to different lengths of ssDNA substrate and annealed duplex product. We find that in general, Redβ FL binds more tightly to annealed duplex product than to ssDNA substrate, while Redβ 177 binds more tightly to ssDNA. In addition, the C-terminal region of Redβ corresponding to residues 182–261 was purified and found to fold into an α-helical domain that is required for the interaction with λexo to form the synaptosome complex. Deletion analysis of Redβ revealed that removal of just eleven residues from the C-terminus disrupts the interaction with λexo as well as ssDNA and dsDNA recombination in vivo . By contrast, the determinants for self-oligomerization of Redβ appear to reside solely within the N-terminal domain. The subtle but significant differences in the relative binding of Redβ FL and Redβ 177 to ssDNA substrate and annealed duplex product may be important for Redβ to function as a SSA protein in vivo.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    56
    References
    11
    Citations
    NaN
    KQI
    []