Mechanochemical immobilization of lead contaminated soil by ball milling with the additive of Ca(H2PO4)2
2020
Abstract Lead (Pb) pollution in the soil is becoming more and more serious, and lead poisoning incidents also constantly occur. Therefore, the remediation of lead pollution in the soil has attracted widespread attention. In this study, heavy metal lead in soil was remediated by mechanochemical methods. The effects of different ball milling conditions on the toxic leaching concentration and morphological distribution (BCR sequential extraction procedure) of lead in contaminated soil were analyzed, including the addition of calcium dihydrogen phosphate (Ca(H2PO4)2), ball milling time, and ball milling speed. The reaction mechanism was analyzed by X-ray diffractometry (XRD), scanning electron microscopy (SEM), and a laser particle size analyzer. The results show that the optimal conditions for mechanochemical immobilization were 10% additive (Ca(H2PO4)2), milling speed of 550 rpm, and ball milling time for 2 h. Under this condition, the toxic leaching concentration of lead from contaminated soil was 4.36 mg·L-1, and in the BCR sequential extraction procedure, Pb was mainly present in the residual fraction (54.96%). The mechanism of mechanochemical solidification of heavy metal lead in soil is that, during the ball milling process, the lead precipitates with Ca(H2PO4)2 to produce dense agglomerates (Pb3(PO4)2 and PbxCa10-x(PO4)6(OH)2), which fixes the lead in the soil and hampers its leaching.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
20
References
3
Citations
NaN
KQI