Phase Switching as the Origin of Large Piezoelectric Response in Organic-Inorganic Perovskites: A First-Principles Study

2020 
Piezoelectrics are critical functional components of many practical applications such as sensors, ultrasonic transducers, actuators, medical imaging, and telecommunications. So far, the best performing piezoelectrics are ferroelectric ceramics, many of which are toxic, heavy, hard, and cost-ineffective. Recently, a groundbreaking discovery of extraordinarily large piezoelectric coefficients in the family of organic-inorganic perovskites gave a hope for a cheaper, environmentally friendly, inexpensive, lightweight, and flexible alternative. However, the origin of such a response in organic-inorganic ferroelectrics whose spontaneous polarization is an order of magnitude smaller than for inorganic counterparts remains unclear. In our study, we employ first-principles simulations to predict that the mechanism associated with large piezoelectric constants is of extrinsic origin and associated with switching between the stable phase and a previously overlooked energetically competitive metastable phase that can be stabilized by the external stress. The phase switching changes the polarization direction and therefore produces a large piezoelectric response similar to ${\mathrm{PbZr}}_{1\ensuremath{-}x}{\mathrm{Ti}}_{x}{\mathrm{O}}_{3}$ near the morphotropic phase boundary. The existence of such metastable phases is likely to manifest as the dynamical molecular disorder above the Curie temperature and therefore could be intrinsic to the entire family of organic-inorganic ferroelectrics with such disorder.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    22
    References
    3
    Citations
    NaN
    KQI
    []