A kernel-based centroid classifier using hypothesis margin

2016 
The centroid-based classifier is both effective and efficient for document classification. However, it suffers from over-fitting and linear inseparability problems caused by its fundamental assumptions. To address these problems, we propose a kernel-based hypothesis margin centroid classifier (KHCC). First, KHCC optimises the class centroids via minimising hypothesis margin under structural risk minimisation principle; second, KHCC uses the kernel method to relieve the problem of linear inseparability in the original feature space. Given the radial basis function, we further discuss a guideline for tuning the value of its parameter. The experimental results on four well-known data-sets indicate that our KHCC algorithm outperforms the state-of-the-art algorithms, especially for the unbalanced data-set.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    24
    References
    3
    Citations
    NaN
    KQI
    []