High-order replica bands in monolayer FeSe/SrTiO3 revealed by polarization-dependent photoemission spectroscopy
2021
The mechanism of the enhanced superconductivity in monolayer FeSe/SrTiO3 has been enthusiastically studied and debated over the past decade. One specific observation has been taken to be of central importance: the replica bands in the photoemission spectrum. Although suggestive of electron-phonon interaction in the material, the essence of these spectroscopic features remains highly controversial. In this work, we conduct angle-resolved photoemission spectroscopy measurements on monolayer FeSe/SrTiO3 using linearly polarized photons. This configuration enables unambiguous characterization of the valence electronic structure with a suppression of the spectral background. We consistently observe high-order replica bands derived from various Fe 3d bands, similar to those observed on bare SrTiO3. The intensity of the replica bands is unexpectedly high and different between dxy and dyz bands. Our results provide new insights on the electronic structure of this high-temperature superconductor and the physical origin of the photoemission replica bands. The origin of the photoemission replica bands in monolayer FeSe/SrTiO3 remains controversial. Here, the authors perform angle-resolved photoemission spectroscopy with polarized photon on FeSe/SrTiO3 and observe high-order replica bands with high intensity from various Fe 3d bands, suggesting a mixed mechanism.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
51
References
1
Citations
NaN
KQI