Permeability and thermal expansion properties of porous LAS ceramic prepared by gel-casting method

2020 
Abstract The porous lithium aluminosilicate (LAS) ceramics with controllable pore structure were fabricated by gel-casting method. The porosity, pore structure, compression strength, gas permeability, and coefficient of thermal expansion (CTE) of the porous LAS ceramics with different monomer content were investigated. The sample with 5 wt.% monomer content has maximum value of compression (26.62 ± 0.54 MPa). When the monomer content increased to 20 wt.%, the porosity, Darcian gas permeability, and thermal expansion coefficient increased to maximum (63.66 %, 13.3 × 10−13 m2, and 1.1–2.6 × 10−6 K−1). The non-Darcian gas permeability showed irregular variation (1.35–3.61 m) with the increase of monomer content. A thermal vibration model was induced to investigate the effect of temperature and monomer content on the CTE. The results showed that the CTE increased with the increase of temperature due to the nonlinear thermal vibration of the atoms in lattice and the asymmetry of the force between particles.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    57
    References
    8
    Citations
    NaN
    KQI
    []