A fully unsupervised compartment-on-demand platform for precise nanoliter assays of time-dependent steady-state enzyme kinetics and inhibition.

2013 
The ability to miniaturize biochemical assays in water-in-oil emulsion droplets allows a massive scale-down of reaction volumes, so that high-throughput experimentation can be performed more economically and more efficiently. Generating such droplets in compartment-on-demand (COD) platforms is the basis for rapid, automated screening of chemical and biological libraries with minimal volume consumption. Herein, we describe the implementation of such a COD platform to perform high precision nanoliter assays. The coupling of a COD platform to a droplet absorbance detection set-up results in a fully automated analytical system. Michaelis–Menten parameters of 4-nitrophenyl glucopyranoside hydrolysis by sweet almond β-glucosidase can be generated based on 24 time-courses taken at different substrate concentrations with a total volume consumption of only 1.4 μL. Importantly, kinetic parameters can be derived in a fully unsupervised manner within 20 min: droplet production (5 min), initial reading of the droplet ...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    53
    References
    66
    Citations
    NaN
    KQI
    []