Flexible and free-standing ternary Cd2GeO4 nanowire/graphene oxide/CNT nanocomposite film with improved lithium-ion battery performance

2016 
To realize flexible lithium-ion batteries (LIBs), the design of flexible electrode/current collector materials with high mechanical flexibility, superior conductivity and excellent electrochemical performance and electrical stability are highly desirable. In this work, we developed a new ternary Cd2GeO4 nanowire/graphene oxide/carbon nanotube nanocomposite (Cd2GeO4 NW/GO/CNT) film electrode. Benefiting from the efficient combination of GO and Cd2GeO4 NWs, our Cd2GeO4 NW/GO/CNT composite film exhibits a capacity of 784 mA h g(-1) after 30 cycles at 200 mA g(-1), which is 2.7 times higher than that of Cd2GeO4 NW/CNT film (290 mA h g(-1)). At a higher rate of 400 mA g(-1) and 1 A g(-1), the Cd2GeO4 NW/GO/CNT film delivers a stable capacity of 617 and 397 mA h g(-1), respectively. Even at 2.5 A g(-1), it still exhibits a high rate capacity of 180 mA h g(-1). The flexible Cd2GeO4 NW/GO/CNT film clearly demonstrates good cycling stability and rate performance for anode materials in LIBs. This route may be extended to design other flexible free-standing metal germanate nanocomposite anode materials.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    33
    References
    13
    Citations
    NaN
    KQI
    []