Efficient separation of crude oil-in-water emulsion based on robust underwater superoleophobic titanium dioxide coated mesh

2019 
Mechanically weak superwetting materials are difficult to apply to the real complex environment for efficient crude oil-in-water emulsion separation. Herein, the robust TiO2 coated meshes were fabricated by spraying titanium dioxide nanoparticles (TiO2 P25) and aluminum phosphate (AP) binder suspension on a stainless steel mesh. The AP with inorganic adhesive was developed to enhance the bonding force between nanoparticle coatings and the stainless steel meshes and the detailed interaction mechanism has been comprehensively explained. The robust TiO2 coated meshes show excellent underwater superoleophobicity even for crude oil. Moreover, the underwater superoleophobic meshes enjoy eminent separation capacity for various oil-in-water emulsions, including crude oil-in-water emulsion with separation efficiency higher than 99.8 % even after 10 cycle's usage. Furthermore, the coated meshes can maintain separation efficiencies over 99.4 % after 500 scratch cycles, sand impact cycles, solvents immersion test and ultrasonic treatment. The mechanical durability of the mesh makes it have great prospect in extensive industrial applications and harsh circumstances. In addition, the mesh can be successfully used for degradating organic dye with high efficiency under UV light irradiation, making it a prospective candidate for wastwater treatment.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    49
    References
    10
    Citations
    NaN
    KQI
    []