Biphasic Ccl20 regulation by Toll-like receptor 9 through the activation of ERK-AP-1 and non-canonical NF-κB signaling pathways

2017 
Abstract Background Chemokines play key roles in immune homeostasis and inflammatory response. Considering the role of Ccl20 and Toll-like receptor 9 (TLR9) in gut homeostasis and inflammatory bowel disease (IBD), regulation of Ccl20 by bacterial DNA, the TLR9 ligand, merits in-depth studies. Methods We analyzed Ccl20 expression in various epithelial cell (EC) lines by q-PCR and ELISA. In-vivo expression was investigated in isolated murine colonocytes by immunoblotting. Transcriptional regulation of Ccl20 was studied by reporter assays, gene knock-down, electrophoretic mobility shift assay and chromatin immunoprecipitation. Activation of upstream kinases was checked by immunoblotting. Results We showed low levels of Ccl20 expression in mouse colonic ECs, but marked induction by in vivo treatment with bacterial DNA. This corroborated with persistent Ccl20 induction in different EC lines. We found involvement of MAP-kinases during the early hours after stimulation, and a novel AP-1site (− 252 bp) regulated the expression in colonic ECs. More importantly, mutually exclusive transcriptional regulation by AP-1 (cjun/cfos) and non-canonical NF-κB (RelB/p52) downstream of MEK-ERK and NIK-IKK-α-NF-κB2 (p100) phosphorylation, respectively was responsible for persistent Ccl20 expression in the colonic cells, while canonical NF-κB isoforms played no role. Conclusions Persistent Ccl20 induction by TLR9 in colonic ECs involves early and delayed activation of two independent signaling pathways. This is the first report of non-canonical NF-κB activation and Ccl20 expression in the colonic ECs by TLR9. General significance Our study will help to better understand immune regulation by Ccl20 in the intestine and may be exploited for future development of novel therapeutics against IBD.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    77
    References
    5
    Citations
    NaN
    KQI
    []