The Contribution of RCK Domains to Human BK Channel Allosteric Activation

2012 
Large conductance voltage- and Ca2+-activated K+ (BK) channels are potent regulators of cellular processes including neuronal firing, synaptic transmission, cochlear hair cell tuning, insulin release, and smooth muscle tone. Their unique activation pathway relies on structurally distinct regulatory domains including one transmembrane voltage-sensing domain (VSD) and two intracellular high affinity Ca2+-sensing sites per subunit (located in the RCK1 and RCK2 domains). Four pairs of RCK1 and RCK2 domains form a Ca2+-sensing apparatus known as the “gating ring.” The allosteric interplay between voltage- and Ca2+-sensing apparati is a fundamental mechanism of BK channel function. Using voltage-clamp fluorometry and UV photolysis of intracellular caged Ca2+, we optically resolved VSD activation prompted by Ca2+ binding to the gating ring. The sudden increase of intracellular Ca2+ concentration ([Ca2+]i) induced a hyperpolarizing shift in the voltage dependence of both channel opening and VSD activation, reported by a fluorophore labeling position 202, located in the upper side of the S4 transmembrane segment. The neutralization of the Ca2+ sensor located in the RCK2 domain abolished the effect of [Ca2+]i increase on the VSD rearrangements. On the other hand, the mutation of RCK1 residues involved in Ca2+ sensing did not prevent the effect of Ca2+ release on the VSD, revealing a functionally distinct interaction between RCK1 and RCK2 and the VSD. A statistical-mechanical model quantifies the complex thermodynamics interplay between Ca2+ association in two distinct sites, voltage sensor activation, and BK channel opening.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    71
    References
    37
    Citations
    NaN
    KQI
    []