Light Field Reconstruction Using Dynamically Generated Filters
2020
Densely-sampled light fields have already show unique advantages in applications such as depth estimation, refocusing, and 3D presentation. But it is difficult and expensive to access. Commodity portable light field cameras, such as Lytro and Raytrix, are easy to carry and easy to operate. However, due to the camera design, there is a trade-off between spatial and angular resolution, which can not be sampled intensively at the same time. In this paper, we present a novel learning-based light field reconstruction approach to increase the angular resolution of a sparsely-sample light field image. Our approach treats the reconstruction problem as the filtering operation on the sub-aperture images of input light field and uses a deep neural network to estimate the filtering kernels for each sub-aperture image. Our network adopts a U-Net structure to extract feature maps from input sub-aperture images and angular coordinate of novel view, then a filter-generating component is designed for kernel estimation. We compare our method with existing light field reconstruction methods with and without depth information. Experiments show that our method can get much better results both visually and quantitatively.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
25
References
0
Citations
NaN
KQI