Direct numerical simulations on crack formation in ceramic materials under thermal shock by using a non-local fracture model

2013 
In this work, a non-local failure model was proposed and implemented into a finite element code. It was then used to simulate the crack evolution in ceramic materials subjected to thermal shock. By using this numerical model, the initiation and propagation of cracks in water quenched ceramic specimens were simulated. The numerical simulations reproduced faithfully the crack patterns in ceramic specimens underwent quenching tests. The periodical and hierarchical characteristics of the crack patterns were accurately predicted. The numerical simulations allow a direct observation on whole the process of crack initiation and growth, which is quite a difficult task in experimental studies. The failure mechanisms and the fracture procedure are discussed according to the numerical results obtained from the simulations. It is shown that the numerical model is simple, robust, accurate and efficient in simulating crack evolution in real structures under thermal shock.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    34
    References
    42
    Citations
    NaN
    KQI
    []