Mastering Atari, Go, chess and shogi by planning with a learned model.
2020
Constructing agents with planning capabilities has long been one of the main challenges in the pursuit of artificial intelligence. Tree-based planning methods have enjoyed huge success in challenging domains, such as chess1 and Go2, where a perfect simulator is available. However, in real-world problems, the dynamics governing the environment are often complex and unknown. Here we present the MuZero algorithm, which, by combining a tree-based search with a learned model, achieves superhuman performance in a range of challenging and visually complex domains, without any knowledge of their underlying dynamics. The MuZero algorithm learns an iterable model that produces predictions relevant to planning: the action-selection policy, the value function and the reward. When evaluated on 57 different Atari games3—the canonical video game environment for testing artificial intelligence techniques, in which model-based planning approaches have historically struggled4—the MuZero algorithm achieved state-of-the-art performance. When evaluated on Go, chess and shogi—canonical environments for high-performance planning—the MuZero algorithm matched, without any knowledge of the game dynamics, the superhuman performance of the AlphaZero algorithm5 that was supplied with the rules of the game. A reinforcement-learning algorithm that combines a tree-based search with a learned model achieves superhuman performance in high-performance planning and visually complex domains, without any knowledge of their underlying dynamics.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
48
References
407
Citations
NaN
KQI