Effects of tissue heterogeneity on trabecular micromechanics examined by microCT-based finite element analysis and digital volume correlation

2021 
Abstract Trabecular bone is natural material with heterogeneous tissue properties. The effect of tissue heterogeneity on the micromechanical behavior of trabecular bone is commonly evaluated by microCT-based finite element (microFE) analysis. Results from prior work remain inconclusive and lack of experimental validation. To address these issues, we combined microFE analysis with mechanical testing and microCT-based digital volume correlation (DVC), as a validation for the microFE approach. Porcine trabecular specimens were tested in compression as sequential microCT scans were taken. DVC was performed to extract “realistic” boundary conditions that were applied to microFE models, and to measure microstructural deformation and strain of the trabecular specimens. Heterogeneous and homogeneous microFE models of each trabecular specimen were created and compared with the experimentally measured microstructural displacement and strains. Results showed strong correlations between DVC-measured and microFE-predicted trabecular displacement and strain fields (R2 ​> ​0.9, p ​
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    43
    References
    0
    Citations
    NaN
    KQI
    []