Gonadal steroid receptors colocalize with central nervous system neurons projecting to the rat prostate gland.

2007 
Mating-induced Fos-immunoreactive (-ir) cells are colocalized with androgen receptors (AR), estrogen receptors (ER), or both in limbic and hypothalamic areas known to mediate male rat mating behavior. A steroid-responsive neural network might govern copulatory behavior in male laboratory rats that is analogous to the network described in female rats that governs the lordosis response. This hypothesized network in males may synchronize and coordinate sexual behavioral responses with physiological responses of the genitals and the internal organs of reproduction. Therefore, the pseudorabies virus (PRV; Bartha strain), a transneuronal, viral retrograde tract tracer, was microinjected into the prostate gland to label this network. After 7 days, brains from infected animals were processed for immunohistochemical labeling of AR, ER, and PRV. The majority of PRV-ir cells exhibited either AR or ER immunoreactivity in the medial preoptic area, median preoptic nucleus, bed nucleus of stria terminalis, hypothalamic paraventricular nucleus, and zona incerta, areas known to play roles in male rat mating behavior. Other structures such as the central tegmental field/subparafascicular nucleus of the thalamus, central nucleus of the amygdala, and medial amygdala, also important in the display of male copulatory behavior, were less reliably labeled. Collectively, a steroid receptor-containing neuronal circuit, largely contained in the diencephalon, was revealed that likely is involved in the autonomic control of the prostate gland and the consummatory aspects of male rat mating behavior.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    74
    References
    9
    Citations
    NaN
    KQI
    []