Mammalian target of rapamycin signaling pathway is involved in synaptic plasticity of the spinal dorsal horn and neuropathic pain in rats by regulating autophagy.

2021 
Unveiling the etiology and the underlying mechanism of neuropathic pain, a poorly treated disease, is essential for the development of effective therapies. This study aimed to explore the role of mammalian target of rapamycin (mTOR) signaling in autophagy-mediated neuropathic pain. We established a spared nerve injury (SNI) model in adult male SD rats by ligating the common peroneal nerve and tibial, with the distal end cutoff. The paw withdrawal threshold (PWT) and C/A-fiber evoked field potentials were determined by electrophysiologic tests at day 0 (before operation), day 7 and day 14 postoperation, and SNI significantly increased field potentials (P < 0.05). Immunohistochemistry and western blots using spinal cord tissues showed that the expressions of GluR1, GluR2, Beclin-1, p62, mTOR and 4EBP1 were significantly increased after SNI (all P < 0.05), whereas the expressions of LC3 and LAMP2 were significantly decreased after SNI (all P < 0.05). Rapamycin efficiently counteracted the effect of SNI and restored the phenotypes to the level comparable to the sham control. In conclusion, rapamycin inhibits C/A-fiber-mediated long-term potentiation in the SNI rat model of neuropathic pain, which might be mediated by activation of autophagy signaling and downregulation of GluRs expression.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    46
    References
    0
    Citations
    NaN
    KQI
    []