Absorbing-like boundaries for quantum field theoretical grid simulations

2013 
Abstract We introduce a computational method that permits us to increase the interaction time for quantum mechanical and quantum field theoretical simulations of multi-particle states on a finite space–time grid. In contrast to the usual approach where the unwanted portion of the wave function close to the grid boundaries is absorbed by a potential with a negative imaginary part, this method is unitary and therefore conserves the norm of the state. This technique is based on assigning particles close to the boundary a larger effective mass (or slower speed of light) such that the particles slow down and cannot re-enter the interaction zone. The method can therefore be applied to multi-particle states for which imaginary potential methods fail.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    25
    References
    1
    Citations
    NaN
    KQI
    []