An explicit nonlinear model predictive ABS controller for electro-hydraulic braking systems

2019 
This study addresses the development and Hardware-in-the-Loop (HiL) testing of an explicit nonlinear model predictive controller (eNMPC) for an anti-lock braking system (ABS) for passenger cars, actuated through an electro-hydraulic braking (EHB) unit. The control structure includes a compensation strategy to guard against performance degradation due to actuation dead times, identified through experimental tests. The eNMPC is run on an automotive rapid control prototyping unit, which shows its real-time capability with comfortable margin. A validated high-fidelity vehicle simulation model is used for the assessment of the ABS on a HiL rig equipped with the braking system hardware. The eNMPC is tested in 7 emergency braking scenarios, and its performance is benchmarked against a proportional integral derivative (PID) controller. The eNMPC results show: i) the control system robustness with respect to variations of tire-road friction condition and initial vehicle speed; and ii) a consistent and significant improvement of the stopping distance and wheel slip reference tracking, with respect to the vehicle with the PID ABS.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    38
    References
    25
    Citations
    NaN
    KQI
    []