High-Dose, Single-Fraction Irradiation Rapidly Reduces Tumor Vasculature and Perfusion in a Xenograft Model of Neuroblastoma.

2016 
Purpose To characterize the effects of high-dose radiation therapy (HDRT) on neuroblastoma tumor vasculature, including the endothelial cell (EC)–pericyte interaction as a potential target for combined treatment with antiangiogenic agents. Methods and Materials The vascular effects of radiation therapy were examined in a xenograft model of high-risk neuroblastoma. In vivo 3-dimensional contrast-enhanced ultrasonography (3D-CEUS) imaging and immunohistochemistry (IHC) were performed. Results HDRT significantly reduced tumor blood volume 6 hours after irradiation compared with the lower doses used in conventionally fractionated radiation. There was a 63% decrease in tumor blood volume after 12-Gy radiation compared with a 24% decrease after 2 Gy. Analysis of tumor vasculature by lectin angiography showed a significant loss of small vessel ends at 6 hours. IHC revealed a significant loss of ECs at 6 and 72 hours after HDRT, with an accompanying loss of immature and mature pericytes at 72 hours. Conclusions HDRT affects tumor vasculature in a manner not observed at lower doses. The main observation was an early reduction in tumor perfusion resulting from a reduction of small vessel ends with a corresponding loss of endothelial cells and pericytes.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    30
    References
    17
    Citations
    NaN
    KQI
    []