Characterization of a novel eukaryotic ATP/ADP translocator located in the plastid envelope of Arabidopsis thaliana L.

1997 
Summary Recently, we have sequenced a cDNA clone from Arabidopsis thaliana L. encoding a novel putative ATP/ADP translocator (AATP1). Here, we demonstrate that the radioactively labeled AATP1 precursor protein, synthesized in vitro, is targeted to envelope membranes of isolated spinach chloroplasts. Antibodies raised against a synthetic peptide of AATP1 recognized a single polypeptide of about 62 kDa in chloroplast inner envelope preparations. The cDNA coding for the AATP1 protein was functionally expressed in Saccharomyces cerevisiae and Escherichia coil In both expression systems, increased rates of ATP transport were observed after reconstitution of the extracted protein into proteoliposomes. To our knowledge, this is the first report on the functional expression of an intrinsic plant membrane protein in E. coil To yield high rates of ATP transport, proteoliposomes had to be preloaded with ADP, indicating a counter-exchange mode of transport. Carboxyatractyloside did not substantially interfere with ATP transport into proteoliposomes containing the plastidic ATP/ADP translocator. An apparent KM for ATP of 28 llM was determined which is similar to values reported for isolated plastidso The data presented here strongly support the conclusion that AATP1 represents a novel eukaryotic adenylate carrier and that it is identical with the so far unknown plastidic ATP/ADP translocator.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    38
    References
    125
    Citations
    NaN
    KQI
    []