[Physiological response and salt-tolerance of Gleditsia microphylla under NaCl stress].
2015
In order to exploit the salt-tolerance ability and mechanism of Gleditsia microphylla, the plant growth, cell membrane permeability, the activities of cell protective enzymes, and the distri- butions of Na+ and K+ in different tissues were investigated under various NaCl stress (0.053%, 0.15%, 0.3%, 0.45% and 0.6%) with potted two-year seedlings. The results were as follows: With the increase of NaCl concentration, the seedling growth decreased while the salt injured index in- creased, and the salt-tolerance thresholds of seedling was 0.42% NaCl. With the NaCl concentration increasing, the membrane permeability, superoxide anion radical generating rate and MDA content increased grandly, while the activities of SOD, POD and CAT demonstrated an increase-decrease curve which reached the peak at 0.3% or 0.45%. Under the high salt stress condition, the supero- xide anion could be consumed timely by increasing the activities of SOD, POD and CAT enzymes, which was useful to avoid cell injure. Under salt stress condition, the Na+ content in different tissues increased gradually, following the order of root > leaf > stem, and the K+ content and K+/Na+ in different tissues decreased, following the order of leaf > root > stem. The K+-Na+ selective transpor- tation coefficients (S(K+) · Na+) of stem and leaf tissues under the soil NaCl stress condition were both increased, following the order of leaf > stem. In conclusion, the findings suggested that the salt- adaptation mechanisms of G. microphylla were root salt-rejection by Na+ accumulation and restriction in root tissue and leaf salt-tolerance by a remarkably increased ability of K+ selective absorption and accumulation in leaf tissue.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
0
References
0
Citations
NaN
KQI