Acyloxyacyl Hydrolase is a Host Determinant of Gut Microbiome-Mediated Pelvic Pain

2021 
Dysbiosis of gut microbiota is associated with many pathologies, yet host factors modulating microbiota remain unclear. Interstitial cystitis/bladder pain syndrome (IC/BPS or IC) is a debilitating condition of chronic pelvic pain often with co-morbid urinary dysfunction and anxiety/depression, and recent studies find fecal dysbiosis in IC/BPS patients. We previously identified the locus encoding acyloxyacyl hydrolase, Aoah, as a modulator of pelvic pain severity in a murine IC/BPS model. AOAH-deficient mice spontaneously develop rodent correlates of pelvic pain, increased responses to induced pelvic pain models, voiding dysfunction, and anxious/depressive behaviors. Here, we report that AOAH-deficient mice exhibit dysbiosis of GI microbiota. AOAH-deficient mice exhibit an enlarged cecum, a phenotype long associated with germ-free rodents, and reduced trans-epithelial electrical resistance consistent with a leaky gut phenotype. AOAH-deficient ceca showed altered gene expression consistent with inflammation, Wnt signaling, and urologic disease. 16S rRNA sequencing of stool revealed altered microbiota in AOAH-deficient mice, and GC-MS identified altered metabolomes. Co-housing AOAH-deficient mice with wild type mice resulted in converged microbiota and altered predicted metagenomes. Co-housing also abrogated the pelvic pain phenotype of AOAH-deficient mice, which was corroborated by oral gavage of AOAH-deficient mice with stool slurry of wild type mice. Converged microbiota also alleviated comorbid anxiety-like behavior in AOAH-deficient mice. Oral gavage of AOAH-deficient mice with anaerobes cultured from IC/BPS stool resulted in exacerbation of pelvic allodynia. Together, these data indicate that AOAH is a host determinant of normal gut microbiota, and the dysbiosis associated with AOAH deficiency contributes to pelvic pain. These findings suggest that the gut microbiota is a potential therapeutic target for IC/BPS.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    129
    References
    1
    Citations
    NaN
    KQI
    []