Analysis of a Combined Cycle Plant Using a Small Particle Receiver to Drive a Primary Brayton Cycle

2015 
All current commercial CSP plants operate at relatively low thermodynamic efficiency due to lower temperatures than similar conventional plants and due to the fact that they all employ Rankine conversion cycles. We present here an investigation on the effects of adding a bottoming steam power cycle to a hybrid CSP plant based on a Small Particle Heat Exchange Receiver (SPHER) driving a gas turbine as the primary cycle. Due to the high operating temperature of the SPHER being considered (over 1000 Celsius), the exhaust air from the primary Brayton cycle still contains a tremendous amount of exergy. While in the previous analysis this fluid was only used in a recuperator to preheat the Brayton working fluid, the current analysis explores the potential power and efficiency gains from instead directing the exhaust fluid through a heat exchanger to power a Rankine steam cycle. Not only do we expect the efficiency of this model to be competitive with conventional power plants, but the water consumption per kilowatt-hour will also be reduced by nearly two thirds as compared to most existing concentrating solar thermal power plants as a benefit of having air as the primary working fluid, which eliminates the condensation step present in Rankine-cycle systems.Coupling a new steam cycle model with the gas-turbine CSP model previously developed at SDSU, a wide range of cases were run to explore options for maximizing both power and efficiency from the proposed CSP combined cycle gas turbine (CCGT) plant. Due to the generalized nature of the bottoming cycle modeling, and the varying nature of solar power, special consideration had to be given to the behavior of the heat exchanger and Rankine cycle in off-design scenarios. The trade-offs of removing the recuperator for preheating the primary fluid are compared to potential overall power and efficiency gains in the combined cycle case.Copyright © 2015 by ASME
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []