Lignin-Based Solid Polymer Electrolytes: Lignin-Graft-Poly(ethylene glycol).

2020 
Lignin is an aromatic-rich biomass polymer that is cheap, abundant, and sustainable. However, its application in the solid electrolyte field is rare due to challenges in well-defined polymer synthesis. Herein, the synthesis of lignin-graft-poly(ethylene glycol) (PEG) and its conductivity test for a solid electrolyte application are demonstrated. The main steps of synthesis include functionalization of natural lignin's hydroxyl to alkene, followed by graft-copolymerization of PEG thiol to the lignin via photoredox thiol-ene reaction. Two lignin-graft-PEGs are prepared having 22 wt% lignin (lignin-graft-PEG 550) and 34 wt% lignin (lignin-graft-PEG 2000). Then, new polymer electrolytes for conductivity tests are prepared via addition of lithium bis-trifluoromethanesulfonimide. The polymer graft electrolytes exhibit ionic conductivity up to 1.4 × 10-4  S cm-1  at 35 °C. The presence of lignin moderately impacts conductivity at elevated temperature compared to homopolymer PEG. Furthermore, the ionic conductivity of lignin-graft-PEG at ambient temperature is significantly higher than homopolymer PEG precedents.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    37
    References
    1
    Citations
    NaN
    KQI
    []